Causal network inference using biochemical kinetics

Publisher:
Oxford University Press (OUP)
Publication Type:
Journal Article
Citation:
Bioinformatics, 2014, 30 (17), pp. i468 - i474
Issue Date:
2014-09-01
Full metadata record
Files in This Item:
Filename Description Size
Causal network inference using biochemical kinetics.pdfPublished Version729.96 kB
Adobe PDF
Motivation: Networks are widely used as structural summaries of biochemical systems. Statistical estimation of networks is usually based on linear or discrete models. However, the dynamics of biochemical systems are generally non-linear, suggesting that suitable non-linear formulations may offer gains with respect to causal network inference and aid in associated prediction problems. Results: We present a general framework for network inference and dynamical prediction using time course data that is rooted in non-linear biochemical kinetics. This is achieved by considering a dynamical system based on a chemical reaction graph with associated kinetic parameters. Both the graph and kinetic parameters are treated as unknown; inference is carried out within a Bayesian framework. This allows prediction of dynamical behavior even when the underlying reaction graph itself is unknown or uncertain. Results, based on (i) data simulated from a mechanistic model of mitogen-activated protein kinase signaling and (ii) phosphoproteomic data from cancer cell lines, demonstrate that non-linear formulations can yield gains in causal network inference and permit dynamical prediction and uncertainty quantification in the challenging setting where the reaction graph is unknown.
Please use this identifier to cite or link to this item: