Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures

Publication Type:
Journal Article
Citation:
Carbon, 2014, 75 pp. 452 - 464
Issue Date:
2014-01-01
Filename Description Size
Multifunctional three-dimensional.pdfPublished Version3 MB
Adobe PDF
Full metadata record
Hybrid composite nanomaterials provide an attractive and versatile material platform for numerous emerging nano- and biomedical applications by offering the possibility to combine diverse properties which are impossible to obtain within a single material. In this work, we present the fabrication of novel hybrid diamond and amorphous diamond-like carbon (DLC) coated nanoporous alumina materials that exhibit multiple functionalities, such as high surface area, quasi-ordered nanopore structure, tunable surface chemistry and electrical conductivity, excellent biological, chemical and corrosion resistance. These multifunctional nanohybrid materials are fabricated using the plasma-induced carbonization method that effectively modifies the surface and the inside of the nanopores of anodic alumina, producing a homogenous ultrathin DLC protecting layer over the whole external and internal surfaces of the membranes. We demonstrate that the interplay between internal and external carbon supply is a critical factor for the formation of the ultrathin sp3-bonded carbon layer in the nanopores. This study brings new insights in the DLC growth mechanisms in confined nanospaces and opens new avenues to fabricate hybrid, chemically resistant and biocompatible carbon-coated nanoarchitectures on other inorganic supports. © 2014 Elsevier Ltd. All rights reserved.
Please use this identifier to cite or link to this item: