Corticosteroids inhibit sphingosine 1-phosphate-induced interleukin-6 secretion from human airway smooth muscle via mitogen-activated protein kinase phosphatase 1-mediated repression of mitogen and stress-activated protein kinase 1.

Publisher:
American Thoracic Society
Publication Type:
Journal Article
Citation:
American Journal of Respiratory Cell and Molecular Biology, 2014, 50 (2), pp. 358 - 368
Issue Date:
2014-02-01
Full metadata record
Files in This Item:
Filename Description Size
Che_et_al-2013-.pdfPublished Version1.63 MB
Adobe PDF
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that plays an important proinflammatory role in asthmatic airways. Corticosteroids are first-line antiinflammatories in asthma; however, their repressive effects on S1P-induced cytokine secretion have not been investigated. To address this, our in vitro study reveals the molecular mechanisms by which corticosteroids inhibit S1P-induced IL-6 expression in the pivotal immunomodulatory cell type, airway smooth muscle (ASM). We first uncover the cellular signaling pathways responsible: S1P activates a cyclic adenosine monophosphate/cAMP response-element-binding protein (CREB)/CRE-dependent pathway to induce IL-6 transcription, concomitant with stimulation of the mitogen-activated protein kinase (MAPK) superfamily and downstream mitogen and stress-activated protein kinase 1 (MSK1) and histone H3 phosphorylation. In this way, S1P stimulates parallel signaling pathways to induce IL-6 secretion via CRE-driven transcription of the IL-6 gene promoter in a relaxed chromatin environment achieved through histone H3 phosphorylation. Second, we investigated how corticosteroids mediate their repressive effects. The corticosteroid dexamethasone inhibits S1P-induced IL-6 protein secretion and mRNA expression, but CREB/CRE transrepression, inhibition of IL-6 mRNA stability, or subcellular relocation of MSK1 were not responsible for the repressive effects of dexamethasone. Rather, we show that dexamethasone rapidly induces up-regulation of the MAPK deactivator MAPK phosphatase 1 (MKP-1) and that MKP-1 blocks the MAPK-driven activation of MSK1 and phosphorylation of histone H3. This was confirmed by treatment with triptolide, an inhibitor of MKP-1 up-regulation, where repressive effects of corticosteroids were reversed. Our study reveals the molecular mechanism underlying the antiinflammatory capacity of corticosteroids to repress proinflammatory functions induced by the potent bioactive sphingolipid S1P in the lung.
Please use this identifier to cite or link to this item: