Recent advances in bismuth activated photonic materials

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Progress in Materials Science, 2014, 64 pp. 1 - 72
Issue Date:
2014-07
Full metadata record
Files in This Item:
Filename Description Size
1-s2.0-S0079642514000231-main.pdfPublished Version9.78 MB
Adobe PDF
Bismuth is one of the most thoroughly investigated main group elements, which has been regarded as ‘the wonder metal’ because of its diverse oxidation states and profound propensities to form bismuth clusters, resulting from the easy involvement in chemical combinations for the electrons in the p orbital. This peculiarity allows them to behave as smart optically active centers in diverse host materials. Remarkable progress in the research of bismuth activated photonic materials has been seen over the last ten years owing to their unique properties and important applications in areas of telecommunication, biomedicine, white light illumination and lasers. The aim of this review is to present a critical overview of the current state of the art in bismuth activated photonic materials, their features, advantages and limitations as well as the future research trends. We first shortly introduce the fundamental properties of bismuth element including principles of bismuth-related luminescence and characterization techniques available. This is followed by a detailed discussion on the recent progress in the synthesis and characterization of bismuth-activated photonic materials, with an emphasis on material systems emitting in the near-infrared (NIR) spectral region. Furthermore, we describe the representative achievements regarding their prospective applications in broadband NIR optical amplifiers, fiber lasers, bioimaging, and white light-emitting diodes. Finally, we point out what key scientific questions remain to be answered, and present our perspectives on future research trends in this exciting field of sciences.
Please use this identifier to cite or link to this item: