R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 μm laser materials

Publisher:
Nature Publishing Group
Publication Type:
Journal Article
Citation:
Scientific Reports, 2015, 5 pp. 1 - 11
Issue Date:
2015-08-17
Full metadata record
Files in This Item:
Filename Description Size
srep13056.pdfPublished Version1.27 MB
Adobe PDF
Er3+ activated germanate glasses modified by La2O3 and Y2O3 with good thermal stability were prepared. 2.7 μm fluorescence was observed and corresponding radiative properties were investigated. A detailed discussion of J–O parameters has been carried out based on absorption spectra and Judd–Ofelt theory. The peak emission cross sections of La2O3 and Y2O3 modified germanate glass are (14.3 ± 0.10) × 10−21 cm2 and (15.4 ± 0.10) × 10−21 cm2, respectively. Non-radiative relaxation rate constants and energy transfer coefficients of 4I11/2 and 4I13/2 levels have been obtained and discussed to understand the 2.7 μm fluorescence behavior. Moreover, the energy transfer processes of 4I11/2 and 4I13/2 level were quantitatively analyzed according to Dexter’s theory and Inokuti–Hirayama model. The theoretical calculations are in good agreement with the observed 2.7 μm fluorescence phenomena. Results demonstrate that the Y2O3 modified germanate glass, which possesses more excellent spectroscopic properties than La2O3 modified germanate glass, might be an attractive candidate for mid-infrared laser.
Please use this identifier to cite or link to this item: