Synoptic composites of tornadic and nontornadic outbreaks

Publication Type:
Journal Article
Monthly Weather Review, 2012, 140 (8), pp. 2590 - 2608
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
06353121.pdfPublished Version5.37 MB
Adobe PDF
Tornadic and nontornadic outbreaks occur within the United States and elsewhere around the world each year with devastating effect. However, few studies have considered the physical differences between these two outbreak types. To address this issue, synoptic-scale pattern composites of tornadic and nontornadic outbreaks are formulated over North America using a rotated principal component analysis (RPCA). A cluster analysis of the RPC loadings group similar outbreak events, and the resulting map types represent an idealized composite of the constituent cases in each cluster. These composites are used to initialize aWeather Research and Forecasting Model (WRF) simulation of each hypothetical composite outbreak type in an effort to determine the WRF's capability to distinguish the outbreak type each composite represents. Synoptic-scale pattern analyses of the composites reveal strikingly different characteristics within each outbreak type, particularly in the wind fields. The tornado outbreak composites reveal a strong low- and midlevel cyclone over the eastern Rockies, which is likely responsible for the observed surface low pressure system in the plains. Composite soundings from the hypothetical outbreak centroids reveal significantly greater bulk shear and storm-relative environmental helicity values in the tornado outbreak environment, whereas instability fields are similar between the two outbreak types. The WRF simulations of the map types confirm results observed in the composite soundings. © 2012 American Meteorological Society.
Please use this identifier to cite or link to this item: