UNEXPECTED PROPERTIES OF BANDWIDTH CHOICE WHEN SMOOTHING DISCRETE DATA FOR CONSTRUCTING A FUNCTIONAL DATA CLASSIFIER.

Publication Type:
Journal Article
Citation:
Ann Stat, 2013, 41 (6), pp. 2739 - 2767
Issue Date:
2013-12-01
Full metadata record
Files in This Item:
Filename Description Size
1312.5082v1.pdfAccepted Manuscript Version338.58 kB
Adobe PDF
The data functions that are studied in the course of functional data analysis are assembled from discrete data, and the level of smoothing that is used is generally that which is appropriate for accurate approximation of the conceptually smooth functions that were not actually observed. Existing literature shows that this approach is effective, and even optimal, when using functional data methods for prediction or hypothesis testing. However, in the present paper we show that this approach is not effective in classification problems. There a useful rule of thumb is that undersmoothing is often desirable, but there are several surprising qualifications to that approach. First, the effect of smoothing the training data can be more significant than that of smoothing the new data set to be classified; second, undersmoothing is not always the right approach, and in fact in some cases using a relatively large bandwidth can be more effective; and third, these perverse results are the consequence of very unusual properties of error rates, expressed as functions of smoothing parameters. For example, the orders of magnitude of optimal smoothing parameter choices depend on the signs and sizes of terms in an expansion of error rate, and those signs and sizes can vary dramatically from one setting to another, even for the same classifier.
Please use this identifier to cite or link to this item: