A Note on Penalized Regression Spline Estimation in the Secondary Analysis of Case-Control Data

Publication Type:
Journal Article
Statistics in Biosciences, 2013, 5 (2), pp. 250 - 260
Issue Date:
Filename Description Size
10.1007%2Fs12561-013-9094-9.pdfPublished Version437.61 kB
Adobe PDF
Full metadata record
Primary analysis of case-control studies focuses on the relationship between disease (D) and a set of covariates of interest (Y,X). A secondary application of the case-control study, often invoked in modern genetic epidemiologic association studies, is to investigate the interrelationship between the covariates themselves. The task is complicated due to the case-control sampling, and to avoid the biased sampling that arises from the design, it is typical to use the control data only. In this paper, we develop penalized regression spline methodology that uses all the data, and improves precision of estimation compared to using only the controls. A simulation study and an empirical example are used to illustrate the methodology. © 2013 International Chinese Statistical Association.
Please use this identifier to cite or link to this item: