Taxonomic perils and pitfalls of dataset assembly in ecology: a case study of the naturalized Asteraceae in Australia

Publisher:
Pensoft Publishers
Publication Type:
Journal Article
Citation:
NeoBiota, 2017, 34 pp. 1 - 20
Issue Date:
2017-02-03
Full metadata record
Files in This Item:
Filename Description Size
078 Murray et al. 2017.pdfPublished Version370.3 kB
Unknown
The value of plant ecological datasets with hundreds or thousands of species is principally determined by the taxonomic accuracy of their plant names. However, combining existing lists of species to assemble a harmonized dataset that is clean of taxonomic errors can be a difficult task for non-taxonomists. Here, we describe the range of taxonomic difficulties likely to be encountered during dataset assembly and present an easy-to-use taxonomic cleaning protocol aimed at assisting researchers not familiar with the finer details of taxonomic cleaning. The protocol produces a final dataset (FD) linked to a companion dataset (CD), providing clear details of the path from existing lists to the FD taken by each cleaned taxon. Taxa are checked off against ten categories in the CD that succinctly summarize all taxonomic modifications required. Two older, publicly-available lists of naturalized Asteraceae in Australia were merged into a harmonized dataset as a case study to quantify the impacts of ignoring the critical process of taxonomic cleaning in invasion ecology. Our FD of naturalized Asteraceae contained 257 species and infra-species. Without implementation of the full cleaning protocol, the dataset would have contained 328 taxa, a 28% overestimate of taxon richness by 71 taxa. Our naturalized Asteraceae CD described the exclusion of 88 names due to nomenclatural issues (e.g. synonymy), the inclusion of 26 updated currently accepted names and four taxa newly naturalized since the production of the source datasets, and the exclusion of 13 taxa that were either found not to be in Australia or were in fact doubtfully naturalized. This study also supports the notion that automated processes alone will not be enough to ensure taxonomically clean datasets, and that manual scrutiny of data is essential. In the long term, this will best be supported by increased investment in taxonomy and botany in university curricula.
Please use this identifier to cite or link to this item: