The Bernstein-von Mises theorem and non-regular models

Publisher:
Institute of Mathematical Statistics
Publication Type:
Journal Article
Citation:
Annals of Statistics, 2014, 42 (5), pp. 1850 - 1878
Issue Date:
2014
Full metadata record
Files in This Item:
Filename Description Size
euclid.aos.1410440627.pdfPublished Version452.37 kB
Adobe PDF
We study the asymptotic behaviour of the posterior distribution in a broad class of statistical models where the "true" solution occurs on the boundary of the parameter space. We show that in this case Bayesian inference is consistent, and that the posterior distribution has not only Gaussian components as in the case of regular models (the Bernstein-von Mises theorem) but also has Gamma distribution components whose form depends on the behaviour of the prior distribution near the boundary and have a faster rate of convergence. We also demonstrate a remarkable property of Bayesian inference, that for some models, there appears to be no bound on efficiency of estimating the unknown parameter if it is on the boundary of the parameter space. We illustrate the results on a problem from emission tomography
Please use this identifier to cite or link to this item: