Synoptic pattern analysis and climatology of ice and snowstorms in the southern great plains, 1993-2011

Publication Type:
Journal Article
Citation:
Weather and Forecasting, 2016, 31 (4), pp. 1109 - 1136
Issue Date:
2016-08-01
Full metadata record
Files in This Item:
Filename Description Size
ContentServer (38).pdfPublished Version11.05 MB
Adobe PDF
© 2016 American Meteorological Society. Winter storms in the southern United States can significantly impact infrastructure and the economy. In this study, National Centers for Environmental Information Storm Event Database and local climate summaries, are used to develop a spatial climatology of freezing precipitation (freezing rain and ice pellets) and snow over the southern Great Plains, 1993-2011. Principal component analysis is performed on the 500-hPa height field, at the approximate onset time of precipitation, for 33 freezing precipitation and 42 snow case studies, to differentiate common synoptic flow fields associated with precipitation type. The five leading patterns for each precipitation type are retained. Composites of temperature, moisture, pressure, and wind fields are constructed and extended 24 h before and after precipitation initiation to track the storm system evolution. Many 500-hPa flow fields are similar for both precipitation types. However, snow-dominant events have stronger and/or more frequent surface cyclone development. Freezing precipitation is associated with the southward propagation of an Arctic anticyclone well ahead of precipitation, weak or absent surface cyclone formation, and a more western trough axis. High-impact ice storms in the region often have slow-moving upper-level flow, persistent isentropic ascent over a surface quasi-stationary front with strongly positive moisture anomalies, and warm layer airmass trajectories originating over the Gulf of Mexico. The results here are based on a relatively small sample size. However, this work is intended to be useful for forecasters, in particular as a pattern recognition aid in predicting the evolution of precipitation within southern Great Plains winter storms.
Please use this identifier to cite or link to this item: