In situ hydrogen dynamics in a hot spring microbial mat during a diel cycle

Publication Type:
Journal Article
Citation:
Applied and Environmental Microbiology, 2016, 82 (14), pp. 4209 - 4217
Issue Date:
2016-01-01
Full metadata record
Files in This Item:
Filename Description Size
zam4209.pdfPublished Version1.32 MB
Adobe PDF
© 2016, American Society for Microbiology. Microbes can produce molecular hydrogen (H2) via fermentation, dinitrogen fixation, or direct photolysis, yet the H2 dynamics in cyanobacterial communities has only been explored in a few natural systems and mostly in the laboratory. In this study, we investigated the diel in situ H2 dynamics in a hot spring microbial mat, where various ecotypes of unicellular cyanobacteria (Synechococcus sp.) are the only oxygenic phototrophs. In the evening, H2 accumulated rapidly after the onset of darkness, reaching peak values of up to 30 μmol H2 liter-1at about 1-mm depth below the mat surface, slowly decreasing to about 11 μmol H2liter-1just before sunrise. Another pulse of H2 production, reaching a peak concentration of 46 μmol H2 liter-1, was found in the early morning under dim light conditions too low to induce accumulation of O2 in the mat. The light stimulation of H2accumulation indicated that nitrogenase activity was an important source of H2during the morning. This is in accordance with earlier findings of a distinct early morning peak in N2fixation and expression of Synechococcus nitrogenase genes in mat samples from the same location. Fermentation might have contributed to the formation of H2 during the night, where accumulation of other fermentation products lowered the pH in the mat to less than pH 6 compared to a spring source pH of 8.3.
Please use this identifier to cite or link to this item: