Vertical bone augmentation induced by ultrathin hydroxyapatite sputtered coated mini titanium implants in a rabbit calvaria model.

Publication Type:
Journal Article
Citation:
Journal of biomedical materials research. Part B, Applied biomaterials, 2015, 103 (8), pp. 1700 - 1708
Issue Date:
2015-11
Full metadata record
Files in This Item:
Filename Description Size
Chou_2014_1.pdfPublished Version785.24 kB
Adobe PDF
BACKGROUND: The purpose of this study was to evaluate the vertical new bone formation induced by sputtered HA-coated titanium implants (HA-coated) compared with sandblasted acid-etched titanium implants (noncoated) in a rabbit calvarial model. MATERIALS AND METHOD: Twenty HA-coated and 20 noncoated titanium implants were divided equally into four groups as HA-coated implant (HA); noncoated implant (NC); HA-coated implant with membrane (HA/M); noncoated implant with membrane (NC/M). All implants were placed 5 mm above the original bone (OB). Collagen membranes were placed over the implants in HA/M and NC/M groups. The animals were sacrificed at 4 weeks (n = 5) and 8 weeks (n = 5). Vertical bone height above OB (VBH, mm) and augmented bone area (ABA, mm(2) ) were analyzed histologically and radiographically. RESULTS: At 4 weeks, VBH reached significantly higher level in HA/M group compared with other three groups (p < 0.05). At 8 weeks, significant difference was detected between HA/M and NC groups (p < 0.05). At 4 and 8 weeks, ABA in HA/M group was significantly larger compared with other three groups (p < 0.05). CONCLUSION: The present results indicated that sputtered HA-coated titanium implant together with collagen membrane could be a novel and effective approach for vertical bone augmentation. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014.
Please use this identifier to cite or link to this item: