Optimization of upconversion luminescence of Nd <sup>3+</sup> -sensitized BaGdF <inf>5</inf> -based nanostructures and their application in dual-modality imaging and drug delivery

Publication Type:
Journal Article
Citation:
Dalton Transactions, 2016, 45 (4), pp. 1708 - 1716
Issue Date:
2016-01-01
Filename Description Size
c5dt04191k.pdfPublished Version3.82 MB
Adobe PDF
Full metadata record
© 2016 The Royal Society of Chemistry. 808 nm excited upconversion nanoparticles (UCNPs) have received extensive attention in the biomedical areas. However, one of the limitations of UCNPs is their lower luminescence efficiency. Aimed at this problem, a series of BaGdF 5 -based UCNPs were prepared by a layer-by-layer procedure. And UC luminescence properties are optimized by varying the doping concentration of rare earth ions, amount and types of shells. It is found that if the amount of core BaGdF 5 :20%Yb 3+ /2%Er 3+ was fixed at 0.5 mmol, the optimized conditions of three shell layers are 0.3 mmol of BaGdF 5 :10%Yb 3+ , 0.5 mmol of BaNdF 5 and 0.5 mmol of BaGdF 5 . Thus the UC luminescence intensity of the resultant nanoparticles BaGdF 5 :20%Yb 3+ /2%Er 3+ @BaGdF 5 :10%Yb 3+ @BaNdF 5 @BaGdF 5 (Er@Yb@Nd@Gd) is enhanced more than four times compared with that of BaGdF 5 :20%Yb 3+ /2%Er 3+ @BaGdF 5 :10%Yb 3+ @BaNdF 5 (Er@Yb@Nd). To further improve the biocompatibility and applications in the biological field, carboxymethyl chitosan (CMC), a type of biocompatible water-transfer agent, was used as a capping ligand to modify the surface of Er@Yb@Nd@Gd. An antitumor drug doxorubicin (DOX) was loaded to the CMC-modified Er@Yb@Nd@Gd nanocarriers by electrostatic interactions. The DOX can be selectively released in an acidic environment, which shows a pH-triggered drug release behavior. On the other hand, Er@Yb@Nd@Gd nanoparticles have excellent magnetic properties due to the presence of Gd components. T 1 -weighted magnetic resonance imaging (MRI) reveals the concentration-dependent brightening effect with longitudinal relaxivity (r 1 ) as high as 43.77 s -1 (mM) -1 , much higher than that of previous Gd 3+ -based counterparts. The results indicate that this multifunctional drug delivery system is expected to be a promising platform for simultaneous cancer therapy and bioimaging.
Please use this identifier to cite or link to this item: