Folic acid modified clay/polymer nanocomposites for selective cell adhesion

Publication Type:
Journal Article
Citation:
Journal of Materials Chemistry B, 2014, 2 (37), pp. 6412 - 6421
Issue Date:
2014-10-07
Filename Description Size
c4tb00850b.pdfPublished Version4.84 MB
Adobe PDF
Full metadata record
A folic acid (FA) modified poly(epsilon-caprolactone)/clay nanocomposite (PCL/MMT-(CH2CH2OH)2-FA) resulting in selective cell adhesion and proliferation was synthesized and characterized as a cell culture and biosensing platform. For this purpose, first the FA modified clay (MMT-(CH2CH2OH)2-FA) was prepared by treating the organo-modified clay, Cloisite 30B [MMT-(CH2CH 2OH)2] with FA in chloroform at 60°C. Subsequent ring opening polymerization of ε-caprolactone in the presence of tin octoate (Sn(Oct)2) using MMT-(CH2CH2OH)2-FA at 110°C resulted in the formation of MMT-(CH2CH 2OH)2-FA with an exfoliated clay structure. The structures of intermediates and the final nanocomposite were investigated in detail by FT-IR spectral analysis and DSC, TGA, XRD, SEM and AFM measurements. The combination of FA, PCL and clay provides a simple and versatile route to surfaces that allows controlled and selective cell adhesion and proliferation. FA receptor-positive HeLa and negative A549 cells were used to prove the selectivity of the modified surfaces. Both microscopy and electrochemical sensing techniques were applied to show the differences in cell adherence on the modified and pristine clay platforms. This approach is expected to be adapted into various bio-applications such as 'cell culture on chip', biosensors and design of tools for targeted diagnosis or therapy. © the Partner Organisations 2014.
Please use this identifier to cite or link to this item: