Analysis of argonaute 4-associated long non-coding RNA in arabidopsis thaliana sheds novel insights into gene regulation through RNA-directed DNA methylation

Publication Type:
Journal Article
Genes, 2017, 8 (8)
Issue Date:
Full metadata record
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation mechanism that requires long noncoding RNA (lncRNA) as scaffold to define target genomic loci. While the role of RdDM in maintaining genome stability is well established, how it regulates protein-coding genes remains poorly understood and few RdDM target genes have been identified. In this study, we obtained sequences of RdDM-associated lncRNAs using nuclear RNA immunoprecipitation against ARGONAUTE 4 (AGO4), a key component of RdDM that binds specifically with the lncRNA. Comparison of these lncRNAs with gene expression data of RdDM mutants identified novel RdDM target genes. Surprisingly, a large proportion of these target genes were repressed in RdDM mutants suggesting that they are normally activated by RdDM. These RdDM-activated genes are more enriched for gene body lncRNA than the RdDM-repressed genes. Histone modification and RNA analyses of several RdDM-activated stress response genes detected increased levels of active histone mark and short RNA transcript in the lncRNA-overlapping gene body regions in the ago4 mutant despite the repressed expression of these genes. These results suggest that RdDM, or AGO4, may play a role in maintaining or activating stress response gene expression by directing gene body chromatin modification preventing cryptic transcription.
Please use this identifier to cite or link to this item: