PSCAN : Fast and Exact Structural Graph Clustering

Publication Type:
Journal Article
IEEE Transactions on Knowledge and Data Engineering, 2017, 29 (2), pp. 387 - 401
Issue Date:
Filename Description Size
07812808.pdfPublished Version985.79 kB
Adobe PDF
Full metadata record
© 2016 IEEE. We study the problem of structural graph clustering, a fundamental problem in managing and analyzing graph data. Given an undirected unweighted graph, structural graph clustering is to assign vertices to clusters, and to identify the sets of hub vertices and outlier vertices as well, such that vertices in the same cluster are densely connected to each other while vertices in different clusters are loosely connected. In this paper, we develop a new two-step paradigm for scalable structural graph clustering based on our three observations. Then, we present a pSCAN approach, within the paradigm, aiming to reduce the number of structural similarity computations, and propose optimization techniques to speed up checking whether two vertices are structure-similar. pSCAN outputs exactly the same clusters as the existing approaches SCAN and SCAN++, and we prove that pSCAN is worst-case optimal. Moreover, we propose efficient techniques for updating the clusters when the input graph dynamically changes, and we also extend our techniques to other similarity measures, e.g., Jaccard similarity. Performance studies on large real and synthetic graphs demonstrate the efficiency of our new approach and our dynamic cluster maintenance techniques. Noticeably, for the twitter graph with 1 billion edges, our approach takes 25 minutes while the state-of-the-art approach cannot finish even after 24 hours.
Please use this identifier to cite or link to this item: