Recent increases in terrestrial carbon uptake at little cost to the water cycle

Publication Type:
Journal Article
Citation:
Nature Communications, 2017, 8 (1)
Issue Date:
2017-12-01
Metrics:
Full metadata record
Files in This Item:
© 2017 The Author(s). Quantifying the responses of the coupled carbon and water cycles to current global warming and rising atmospheric CO 2 concentration is crucial for predicting and adapting to climate changes. Here we show that terrestrial carbon uptake (i.e. gross primary production) increased significantly from 1982 to 2011 using a combination of ground-based and remotely sensed land and atmospheric observations. Importantly, we find that the terrestrial carbon uptake increase is not accompanied by a proportional increase in water use (i.e. evapotranspiration) but is largely (about 90%) driven by increased carbon uptake per unit of water use, i.e. water use efficiency. The increased water use efficiency is positively related to rising CO 2 concentration and increased canopy leaf area index, and negatively influenced by increased vapour pressure deficits. Our findings suggest that rising atmospheric CO 2 concentration has caused a shift in terrestrial water economics of carbon uptake.
Please use this identifier to cite or link to this item: