Representing nighttime and minimum conductance in CLM4.5: Global hydrology and carbon sensitivity analysis using observational constraints

Publication Type:
Journal Article
Geoscientific Model Development, 2017, 10 (1), pp. 321 - 331
Issue Date:
Full metadata record
The terrestrial biosphere regulates climate through carbon, water, and energy exchanges with the atmosphere. Land-surface models estimate plant transpiration, which is actively regulated by stomatal pores, and provide projections essential for understanding Earth's carbon and water resources. Empirical evidence from 204 species suggests that significant amounts of water are lost through leaves at night, though land-surface models typically reduce stomatal conductance to nearly zero at night. Here, we test the sensitivity of carbon and water budgets in a global land-surface model, the Community Land Model (CLM) version 4.5, to three different methods of incorporating observed nighttime stomatal conductance values. We find that our modifications increase transpiration by up to 5ĝ€% globally, reduce modeled available soil moisture by up to 50ĝ€% in semi-arid regions, and increase the importance of the land surface in modulating energy fluxes. Carbon gain declines by up to ĝ1/4 4ĝ€% globally and > ĝ€25ĝ€% in semi-arid regions. We advocate for realistic constraints of minimum stomatal conductance in future climate simulations, and widespread field observations to improve parameterizations.
Please use this identifier to cite or link to this item: