Effective conversion of amide to carboxylic acid on polymers of intrinsic microporosity (PIM-1) with nitrous acid

Publication Type:
Journal Article
Citation:
Membranes, 2018, 8 (2)
Issue Date:
2018-06-01
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
membranes-08-00020.pdfPublished Version5.21 MB
Adobe PDF
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. Carboxylate-functionalised polymers of intrinsic microporosity (C-PIMs) are highly desirable materials for membrane separation applications. The recently reported method to afford C-PIMs was via an extensive base hydrolysis process requiring 360 h. Herein, a novel and effective method to convert PIM-CONH2 to C-PIM using nitrous acid was studied. The chemical structure of C-PIM was characterised by1H NMR,13C NMR, FTIR, elemental analysis, UV-Vis, TGA and TGA-MS. Complete conversion from amide to carboxylic acid groups was confirmed. Decarboxylation of C-PIM was also successfully studied by TGA-MS for the first time, with a loss of m/z 44 amu (CO2) observed at the first degradation stage. TGA also revealed decreased thermal stability of C-PIM relative to PIM-CONH2 under both N2 and air atmosphere. Gel permeation chromatography (GPC) analysis showed continuous molecular weight degradation of C-PIM with extended reaction time. Aromatic nitration was also observed as a side reaction in some cases.
Please use this identifier to cite or link to this item: