Continuous Optimization Framework for Depth Sensor Viewpoint Selection

Publication Type:
Conference Proceeding
Citation:
2019
Issue Date:
2019
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
Manuscript.pdfAccepted Manuscript version8.54 MB
Adobe PDF
Distinguishing differences between areas represented with point cloud data is generally approached by choosing a optimal viewpoint. The most informative view of a scene ultimately enables to have the optimal coverage over distinct points both locally and globally while accounting for the distance to the foci of attention. Measures of surface saliency, related to curvature inconsistency, extenuate differences in shape and are coupled with viewpoint selection approaches. As there is no analytical solution for optimal viewpoint selection, candidate viewpoints are generally discretely sampled and evaluated for information and require (near) exhaustive combinatorial searches. We present a consolidated optimization framework for optimal viewpoint selection with a continuous cost function and analytically derived Jacobian that incorporates view angle, vertex normals and measures of task related surface information relative to viewpoint. We provide a mechanism in the cost function to incorporate sensor attributes such as operating range, field of view and angular resolution. The framework is evaluated as competing favorably with the state-of-the-art approaches to viewpoint selection while significantly reducing the number of viewpoints to be evaluated in the process.
Please use this identifier to cite or link to this item: