Establishment of an in vitro chicken epithelial cell line model to investigate Eimeria tenella gamete development

Publication Type:
Journal Article
Citation:
Parasites and Vectors, 2018, 11 (1)
Issue Date:
2018-01-18
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
13071_2018_Article_2622.pdfPublished Version2.92 MB
Adobe PDF
© 2018 The Author(s). Background: Eimeria tenella infection leads to acute intestinal disorders responsible for important economic losses in poultry farming worldwide. The life-cycle of E. tenella is monoxenous with the chicken as the exclusive host; infection occurs in caecal epithelial cells. However, in vitro, the complete life-cycle of the parasite has only been propagated successfully in primary chicken kidney cells, which comprise undefined mixed cell populations; no cell line model has been able to consistently support the development of the sexual stages of the parasite. We therefore sought to develop a new model to study E. tenella gametogony in vitro using a recently characterised chicken cell line (CLEC-213) exhibiting an epithelial cell phenotype. Methods: CLEC-213 were infected with sporozoites from a precocious strain or with second generation merozoites (merozoites II) from wild type strains. Sexual stages of the parasite were determined both at the gene and protein levels. Results: To our knowledge, we show for the first time in CLEC-213, that sporozoites from a precocious strain of E. tenella were able to develop to gametes, as verified by measuring gene expression and by using antibodies to a microgamete-specific protein (EtFOA1: flagellar outer arm protein 1) and a macrogamete-specific protein (EtGAM-56), but oocysts were not observed. However, both gametes and oocysts were observed when cells were infected with merozoites II from wild type strains, demonstrating that completion of the final steps of the parasite cycle is possible in CLEC-213 cells. Conclusion: The epithelial cell line CLEC-213 constitutes a useful avian tool for studying Eimeria epithelial cell interactions and the effect of drugs on E. tenella invasion, merogony and gametogony.
Please use this identifier to cite or link to this item: