Observation of Fourier transform limited lines in hexagonal boron nitride

Publication Type:
Journal Article
Citation:
Physical Review B, 2018, 98 (8)
Issue Date:
2018-08-31
Full metadata record
© 2018 American Physical Society. Single defect centers in layered hexagonal boron nitride are promising candidates as single-photon sources for quantum optics and nanophotonics applications. However, spectral instability hinders many applications. Here, we perform resonant excitation measurements and observe Fourier transform limited linewidths down to ≈50 MHz. We investigated the optical properties of more than 600 single-photon emitters (SPEs) in hBN. The SPEs exhibit narrow zero-phonon lines distributed over a spectral range from 580 to 800 nm and with dipolelike emission with a high polarization contrast. Finally, the emitters withstand transfer to a foreign photonic platform, namely, a silver mirror, which makes them compatible with photonic devices such as optical resonators and paves the way to quantum photonics applications.
Please use this identifier to cite or link to this item: