Synthesis and characterization of SrBi4Ti4O 15 ferroelectric filler based composite polymer electrolytes for lithium ion batteries

Publication Type:
Journal Article
Polymer Bulletin, 2008, 60 (2-3), pp. 351 - 361
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2009006613OK.pdf458.43 kB
Adobe PDF
Composite polymer electrolytes (CPEs) based on poly (ethylene oxide) (PEO) (Mol.Wt ∼ 6×105) complexed with LiN(CF3SO 2)2 lithium salt and SrBi4Ti4O 15 ferroelectric ceramic filler have been prepared as films. Citrate gel technique and conventional solid state technique were employed for the synthesis of the ferroelectric fillers in order to study the effect of particle size of the filler on ionic conductivity of the polymer electrolyte. Characterization techniques such as X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and temperature dependant DC conductivity studies were taken for the prepared polymer composite electrolytes. The broadening of DTA endotherms on addition of ceramic fillers to the polymer salt complex indicated the reduction in crystallinity. An enhancement in conductivity was observed with the addition of SrBi 4Ti4O15 as filler to the (PEO) 8-LiN(CF3SO2)2 polymer salt complexes. Among the investigated samples (PEO)8-LiN(CF 3SO2)2 +10 wt% SrBi4Ti 4O15 (citrate gel) polymer composite exhibits a maximum conductivity. © 2007 Springer-Verlag.
Please use this identifier to cite or link to this item: