The QIAGEN 140-locus single-nucleotide polymorphism (SNP) panel for forensic identification using massively parallel sequencing (MPS): an evaluation and a direct-to-PCR trial

Publication Type:
Journal Article
International Journal of Legal Medicine, 2019, 133 (3), pp. 677 - 688
Issue Date:
Filename Description Size
Avent2018_Article_TheQIAGEN140-locusSingle-nucle.pdfPublished Version1.15 MB
Adobe PDF
Full metadata record
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Massively parallel sequencing (MPS) of identity informative single-nucleotide polymorphisms (IISNPs) enables hundreds of forensically relevant markers to be analysed simultaneously. Generating DNA sequence data enables more detailed analysis including identification of sequence variations between individuals. The GeneRead DNAseq 140 IISNP MPS panel (QIAGEN) has been evaluated on both the MiSeq (Illumina) and Ion PGM™ (Applied Biosystems) MPS platforms using the GeneRead DNAseq Targeted Panels V2 library preparation workflow (QIAGEN). The aims of this study were to (1) determine if the GeneRead DNAseq panel is effective for identity testing by assessing deviation from Hardy-Weinberg (HWE) and pairwise linkage equilibrium (LE); (2) sequence samples with the GeneRead DNAseq panel on the Ion PGM™ using the QIAGEN workflow and assess specificity, sensitivity and accuracy; (3) assess the efficacy of adding biological samples directly to the GeneRead DNAseq PCR, without prior DNA extraction; and (4) assess the effect of varying coverage and allele frequency thresholds on genotype concordance. Analyses of the 140 SNPs for HWE and LE using Fisher’s exact tests and the sequential Bonferroni correction revealed that one SNP was out of HWE in the Japanese population and five SNP combinations were commonly out of LE in 13 of 14 populations. The panel was sensitive down to 0.3125 ng of DNA input. A direct-to-PCR approach (without DNA extraction) produced highly concordant genotypes. The setting of appropriate allele frequency thresholds is more effective for reducing erroneous genotypes than coverage thresholds.
Please use this identifier to cite or link to this item: