Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery–Hamel flow
- Publication Type:
- Journal Article
- Citation:
- Journal of the Taiwan Institute of Chemical Engineers, 2018, 91 pp. 57 - 85
- Issue Date:
- 2018-10-01
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
© 2018 Taiwan Institute of Chemical Engineers In this paper, a neuro-heuristic technique by incorporating artificial neural network models (NNMs) optimized with sequential quadratic programming (SQP) is proposed to solve the dynamics of nanofluidics system based on magneto-hydrodynamic (MHD) Jeffery–Hamel (JHF) problem involving nano-meterials. Original partial differential equations associated with MHD–JHF are transformed into third order ordinary differential equations based model. Furthermore, the transformed system has been implemented by the differential equation NNMs (DE-NNMs) which are constructed by a defined error function using log-sigmoid, radial basis and tan-sigmoid windowing kernels. The parameters of DE-NNM of nanofluidics system are optimized with SQP algorithm. To illustrate the performance of the proposed system, MHD–JHF models with base-fluid water mixed with alumina, silver and copper nanoparticles for different Hartman numbers, Reynolds numbers, angles of the channel and volume fractions with three different proposed DE-NNMs are designed to evaluate. For comparison purpose, the proposed results with reference numerical solutions of Adams solver illustrate their worth. Statistical inferences through different performance indices are given to demostrate the accuracy, stability and robustness of the stochastic solvers.
Please use this identifier to cite or link to this item: