Porous Cryo-Dried MXene for Efficient Capacitive Deionization

Publication Type:
Journal Article
Citation:
Joule, 2018, 2 (4), pp. 778 - 787
Issue Date:
2018-04-18
Filename Description Size
Porous Cryo-Dried MXene for Efficient Capacitive Deionization.pdfSubmitted Version2.37 MB
Adobe PDF
Full metadata record
© 2018 Elsevier Inc. Aerogel-like, porous Ti 3 C 2 T x MXene architecture electrode displayed a high electroadsorption capacity for capacitive deionization of saline water. A vacuum freeze-drying process was employed to prevent the restacking of MXene nanosheets due to van der Waals forces, leading to the formation of a porous structure with a large specific surface area. When applied as electrode materials for capacitive deionization, porous MXene demonstrated a high specific capacitance of 156 F/g and a volumetric capacitance of 410 F/cm 3 in 1 M sodium chloride (NaCl) electrolyte. The porous Ti 3 C 2 T x MXene electrodes can deliver a high electroadsorption capacity of 118 mg/cm 3 (45 mg/g) in 10,000 mg/L NaCl solution (applied voltage: 1.2 V) and excellent cycling stability (up to 60 cycles) in comparison with the restacked MXene and activated carbon electrodes, indicating its promising potential for desalination applications. We report a rationally designed process to produce an aerogel-like porous MXene electrode material for capacitive deionization. The intercalation-delamination of organic compounds and a vacuum freeze-drying technique were employed to prevent the restacking of MXene nanosheets due to van der Waals forces. The porous Ti 3 C 2 T x is hydrophilic and has a well-defined porous structure with a high surface area and high electrical conductivity. When applied as electrodes in a capacitive deionization cell, porous Ti 3 C 2 T x MXene electrodes exhibited an impressively high ion adsorption capacity of 118 mg/cm 3 in a salt solution with the concentration of 10,000 mg/L, which is more than 12 times higher than previously reported carbon-based electrode materials. The porous MXene materials may open a new avenue for high-performance capacitive desalination. Porous Ti 3 C 2 T x MXene architectures were prepared and used as electrode materials with a high electrosorption capacity for capacitive deionization of saline or brackish water. The porous Ti 3 C 2 T x MXene electrodes can deliver a high electrosorption capacity of 118 mg/cm 3 (45 mg/g) in 10,000 mg/L NaCl solution (applied voltage: 1.2 V), indicating its promising application in pure water production.
Please use this identifier to cite or link to this item: