A mathematical modelling approach for managing sudden disturbances in a three-tier manufacturing supply chain

Publication Type:
Journal Article
Citation:
Annals of Operations Research, 2019
Issue Date:
2019-01-01
Filename Description Size
ANOR - accepted version.pdfAccepted Manuscript Version1.82 MB
Adobe PDF
Full metadata record
© 2019, Springer Science+Business Media, LLC, part of Springer Nature. This paper aims to develop a recovery planning approach in a three-tier manufacturing supply chain, which has a single supplier, manufacturer, and retailer under an imperfect production environment, in which we consider three types of sudden disturbances: demand fluctuation, and disruptions to production and raw material supply, which are not known in advance. Firstly, a mathematical model is developed for generating an ideal plan under imperfect production for a finite planning horizon while maximizing total profit, and then we re-formulate the model to generate the recovery plan after happening of each sudden disturbance. Considering the high commercial cost and computational intensity and complexity of this problem, we propose an efficient heuristic, to obtain a recovery plan, for each disturbance type, for a finite future period, after the occurrence of a disturbance. The heuristic solutions are compared with a standard solution technique for a considerable number of random test instances, which demonstrates the trustworthy performance of the developed heuristics. We also develop another heuristic for managing the combined effects of multiple sudden disturbances in a period. Finally, a simulation approach is proposed to investigate the effects of different types of disturbance events generated randomly. We present several numerical examples and random experiments to explicate the benefits of our developed approaches. Results reveal that in the event of sudden disturbances, the proposed mathematical and heuristic approaches are capable of generating recovery plans accurately and consistently.
Please use this identifier to cite or link to this item: