Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri

Publication Type:
Journal Article
Citation:
Aquatic Toxicology, 2019, pp. 91 - 100
Issue Date:
2019-02-01
Full metadata record
© 2018 Elsevier B.V. Copper (Cu) is an essential micronutrient for plants and as such is vital to many metabolic processes. Nevertheless, when present at elevated concentrations, Cu can exert toxic effects on plants by disrupting protein functions and promoting oxidative stress. Due to their proximity to the urbanised estuaries, seagrasses are vulnerable to chemical contamination via industrial runoff, waste discharges and leachates. Zostera muelleri is a common seagrass species that forms habitats in the intertidal areas along the temperate coast of Australia. Previous studies have shown the detrimental effects of Cu exposure on photosynthetic efficiency of Z. muelleri. The present study focuses on the impacts of sublethal Cu exposure on the physiological and molecular responses. By means of a single addition, plants were exposed to 250 and 500 μg Cu L−1 (corresponding to 3.9 and 7.8 μM, respectively) as well as uncontaminated artificial seawater (control) for 7 days. Chlorophyll fluorescence parameters, measured as the effective quantum yield (ϕPSII), the maximum quantum yield (Fv/Fm) and non-photochemical quenching (NPQ) were assessed daily, while Cu accumulation in leaf tissue, total reactive oxygen species (ROS) and the expression of genes involved in antioxidant activities and trace metal binding were determined after 1, 3 and 7 days of exposure. Z. muelleri accumulated Cu in the leaf tissue in a concentration-dependent manner and the bioaccumulation was saturated by day 3. Cu exposure resulted in an acute suppression of ϕPSII and Fv/Fm. These two parameters also showed a concentration- and time-dependent decline. NPQ increased sharply during the first few days before subsequently decreasing towards the end of the experiment. Cu accumulation induced oxidative stress in Z. muelleri as an elevated level of ROS was detected on day 7. Lower Cu concentration promoted an up-regulation of genes encoding Cu/Zn-superoxide dismutase (Cu/Zn-sod), ascorbate peroxidase (apx), catalase (cat) and glutathione peroxidase (gpx), whereas no significant change was detected with higher Cu concentration. Exposure to Cu at any concentration failed to induce regulation in the expression level of genes encoding metallothionein type 2 (mt2), metallothionein type 3 (mt3) and cytochrome c oxidase copper chaperone (cox17). It is concluded that chlorophyll fluorescence parameters provide timely probe of the status of photosynthetic machinery under Cu stress. In addition, when exposed to a moderate level of Cu, Z. muelleri mitigates any induced oxidative stress by up-regulating transcripts coding for antioxidant enzymes.
Please use this identifier to cite or link to this item: