Facile synthesis of: Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries

Publication Type:
Journal Article
RSC Advances, 2019, 9 (35), pp. 20424 - 20431
Issue Date:
Full metadata record
© The Royal Society of Chemistry. A comparatively facile and ecofriendly process has been developed to synthesize porous carbon materials from Camellia oleifera shells. Potassium carbonate solution (K2CO3) impregnation is introduced to modify the functional groups on the surface of Camellia oleifera shells, which may play a role in promoting the development of pore structure during carbonization treatment. Moreover, a small amount of naturally embedded nitrogen and sulfur in the Camellia oleifera shells can also bring about the formation of pores. The Camellia oleifera shell-derived carbon has a large specific surface area of 1479 m2 g-1 with a total pore volume of 0.832 cm3 g-1 after being carbonized at 900 °C for 1 h. Furthermore, when used as an anode for lithium-ion batteries, the sample shows superior electrochemical performance with a specific capacity of 483 mA h g-1 after 100 cycles measured at 200 mA g-1 current density. Surprisingly, the specific capacity is even gradually increased with cycling. In addition, this sample exhibits almost 100% retention capacity after 250 cycles at a current density of 200 mA g-1.
Please use this identifier to cite or link to this item: