Effects of Standing Litter on the Biophysical Interpretation of Plant Canopies with Spectral Indices

Publication Type:
Journal Article
Remote Sensing Of Environment, 1996, 55 (2), pp. 123 - 138
Issue Date:
Full metadata record
Files in This Item:
Filename Description SizeFormat
2009001377OK.pdf1.66 MBAdobe PDF
Litter is frequently present within vegetation canopies and thus contributes to the overall spectral response of a canopy. Consequently, litter will affect spectral indices designed to be sensitive to green vegetation, soil brightness or other features. The main objectives of the current research were to 1) evaluate the spectral properties of green vegetation and litter and 2) quantify the effect of standing litter on the performance of spectral indices. The SAIL (scattering by arbitrarily inclined leaves) model was used to generate canopy reflectance mixtures and to estimate fractions of absorbed photosynthetically active radiation (fAPAR) with varying leaf area index (LAI), soil background, combinations of vegetation component spectral properties, and one or two horizontal vegetation layers. Spectral measurements of different bare soils and mature green and senescent leaves of representative plant species at the HAPEX-Sahel (Hydrological Atmospheric Pilot Experiment) study sites were used as input. The normalized difference vegetation index (NDVI), the soil adjusted vegetation index (SAVI), and the modified NDVI (MNDVI) and mixture model spectral indices were selected to evaluate their performance with respect to standing litter and green vegetation mixtures. Spectral reflectance signatures of leaf litter varied significantly, but strongly resembled soil spectral characteristics. The biophysical phyameters (LAI, fAPAR), derived from spectral vegetation indices, tended to be overestimated for randomly distributed, sparse green and litter vegetation cover mixtures, and underestimated for randomly distributed dense green and litter vegetation cover mixtures.
Please use this identifier to cite or link to this item: