Proteomics quantifies protein expression changes in a model cnidarian colonised by a thermally tolerant but suboptimal symbiont

Publication Type:
Journal Article
ISME Journal, 2019, 13 (9), pp. 2334 - 2345
Issue Date:
Filename Description Size
s41396-019-0437-5.pdfPublished Version1.3 MB
Adobe PDF
Full metadata record
© 2019, International Society for Microbial Ecology. The acquisition of thermally tolerant algal symbionts by corals has been proposed as a natural or assisted mechanism of increasing coral reef resilience to anthropogenic climate change, but the cell-level processes determining the performance of new symbiotic associations are poorly understood. We used liquid chromatography–mass spectrometry to investigate the effects of an experimentally induced symbiosis on the host proteome of the model sea anemone Exaiptasia pallida. Aposymbiotic specimens were colonised by either the homologous dinoflagellate symbiont (Breviolum minutum) or a thermally tolerant, ecologically invasive heterologous symbiont (Durusdinium trenchii). Anemones containing D. trenchii exhibited minimal expression of Niemann-Pick C2 proteins, which have predicted biochemical roles in sterol transport and cell recognition, and glutamine synthetases, which are thought to be involved in nitrogen assimilation and recycling between partners. D. trenchii-colonised anemones had higher expression of methionine-synthesising betaine–homocysteine S-methyltransferases and proteins with predicted oxidative stress response functions. Multiple lysosome-associated proteins were less abundant in both symbiotic treatments compared with the aposymbiotic treatment. The differentially abundant proteins are predicted to represent pathways that may be involved in nutrient transport or resource allocation between partners. These results provide targets for specific experiments to elucidate the mechanisms underpinning compensatory physiology in the coral–dinoflagellate symbiosis.
Please use this identifier to cite or link to this item: