The kainate receptor antagonist UBP310 but not single deletion of GluK1, GluK2, or GluK3 subunits, inhibits MPTP-induced degeneration in the mouse midbrain

Publication Type:
Journal Article
Citation:
Experimental Neurology, 2020, 323
Issue Date:
2020-01-01
Full metadata record
© 2019 Elsevier Inc. The excitatory neurotransmitter glutamate is essential in basal ganglia motor circuits and has long been thought to contribute to cell death and degeneration in Parkinson's disease (PD). While previous research has shown a significant role of NMDA and AMPA receptors in both excitotoxicity and PD, the third class of ionotropic glutamate receptors, kainate receptors, have been less well studied. Given the expression of kainate receptor subunits GluK1-GluK3 in key PD-related brain regions, it has been suggested that GluK1-GluK3 may contribute to excitotoxic cell loss. Therefore the neuroprotective potential of the kainate receptor antagonist UBP310 in animal models of PD was investigated in this study. Stereological quantification revealed administration of UBP310 significantly increased survival of dopaminergic and total neuron populations in the substantia nigra pars compacta in the acute MPTP mouse model of PD. In contrast, UBP310 was unable to rescue MPTP-induced loss of dopamine levels or dopamine transporter expression in the striatum. Furthermore, deletion of GluK1, GluK2 or GluK3 had no effect on MPTP or UBP310-mediated effects across all measures. Interestingly, UBP310 did not attenuate cell loss in the midbrain induced by intrastriatal 6-OHDA toxicity. These results indicate UBP310 provides neuroprotection in the midbrain against MPTP neurotoxicity that is not dependent on specific kainate receptor subunits.
Please use this identifier to cite or link to this item: