Spontaneous photon-pair generation from a dielectric nanoantenna
- Publication Type:
- Journal Article
- Citation:
- Optica, 2019, 6 (11), pp. 1416 - 1422
- Issue Date:
- 2019-01-01
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement Optical nanoantennas have shown a great capacity for efficient extraction of photons from the near to the far field, enabling directional emission from nanoscale single-photon sources. However, their potential for the generation and extraction of multi-photon quantum states remains unexplored. Here we experimentally demonstrate the nanoscale generation of two-photon quantum states at telecommunication wavelengths based on spontaneous parametric down-conversion in an optical nanoantenna. The antenna is a crystalline AlGaAs nanocylinder, possessing Mie-type resonances at both the pump and the bi-photon wavelengths, and when excited by a pump beam it generates photon pairs with a rate of 35 Hz. Normalized to the pump energy stored by the nanoantenna, this rate corresponds to 1.4 GHz/Wm, being 1 order of magnitude higher than conventional on-chip or bulk photon-pair sources. Our experiments open the way for multiplexing several antennas for coherent generation of multi-photon quantum states with complex spatial-mode entanglement and applications in free-space quantum communications and sensing.
Please use this identifier to cite or link to this item: