Optical properties and plasmon resonances of titanium nitride nanostructures

Publication Type:
Journal Article
Nanotechnology, 2010, 21 (11)
Issue Date:
Full metadata record
We examine the optical properties of nanostructures comprised of titanium nitride, TiN, an electrically conducting intermetallic-like compound. This material can be deposited in the form of durable films by physical vapor deposition. Use of nanosphere templating techniques extends the range of nanostructures that can be produced to include the versatile semi-shell motif. The dielectric properties of TiN1 - x depend upon stoichiometry and are favorable for plasmon resonance phenomena in the mid-visible to near-infrared range of the spectrum and for x≈0. We analyze the optical phenomena operating in such structures using a combination of experiment and simulation and show that semi-shells of TiN exhibit a tunable localized plasmon resonance with light. The material is, however, unsuitable for applications in which a long-distance surface plasmon polariton is desired. © 2010 IOP Publishing Ltd.
Please use this identifier to cite or link to this item: