Seagrass leaf reddening alters the microbiome of Zostera muelleri

Publisher:
Inter-Research Science Center
Publication Type:
Journal Article
Citation:
Marine Ecology Progress Series, 2020, 646, pp. 29-44
Issue Date:
2020-07-30
Filename Description Size
m646p029_supp.pdfPublished version1.85 MB
Adobe PDF
m646p029.pdfPublished version3.41 MB
Adobe PDF
Full metadata record
Seagrasses host an extremely diverse microbiome that plays fundamental roles in seagrass health and productivity but may be sensitive to shifts in host physiology. Here, we observed a leaf reddening phenomenon in Zostera muelleri and characterized bacterial assemblages associated with green and reddened leaves to determine whether this change in leaf pigmentation stimulates shifts in the seagrass microbiome. Using 16S rRNA gene amplicon sequencing, we observed that the microbiome associated with 4 different leaf pigmentation categories (i.e. green, white, purple and black) differed significantly, with substantial changes in microbiome composition when the tissue is whitened (non-pigmented). Actinobacteria, Rhodobacteraceae, Erythrobacter, Sulfitobacter and Granulosicoccus were enriched in black and/or purple tissues and discriminated these microbiomes from those associated with green leaves. Contrastingly, all ‘discriminatory’ zero-radius operational taxonomic units (zOTUs) were depleted within the communities associated with white samples. While 40% of the abundant zOTUs identified were exclusively associated with a single pigmentation category, only 3% were shared across all categories, indicating partitioning of the phyllosphere microbiome. However, a significant proportion of the ‘normal’ (green) leaf core microbiome was also retained in the core communities associated with black (70%) and purple (70%) tissues. Contrastingly, no core zOTUs were maintained in the white tissues. These results indicate that environmentally driven physiological shifts in seagrasses, such as leaf reddening expressed in response to high irradiance, can impact the seagrass leaf microbiome, resulting in significant shifts in the microbiome of reddened leaves with the most extreme expression (in white tissue of reddened leaves).
Please use this identifier to cite or link to this item: