Venom Peptide Repertoire of the European Myrmicine Ant Manica rubida: Identification of Insecticidal Toxins.
- Publisher:
- AMER CHEMICAL SOC
- Publication Type:
- Journal Article
- Citation:
- Journal of proteome research, 2020, 19, (4), pp. 1800-1811
- Issue Date:
- 2020-04
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
acs.jproteome.0c00048.pdf | Published version | 3.42 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
Using an integrated transcriptomic and proteomic approach, we characterized the venom peptidome of the European red ant, Manica rubida. We identified 13 "myrmicitoxins" that share sequence similarities with previously identified ant venom peptides, one of them being identified as an EGF-like toxin likely resulting from a threonine residue modified by O-fucosylation. Furthermore, we conducted insecticidal assays of reversed-phase HPLC venom fractions on the blowfly Lucilia caesar, permitting us to identify six myrmicitoxins (i.e., U3-, U10-, U13-, U20-MYRTX-Mri1a, U10-MYRTX-Mri1b, and U10-MYRTX-Mri1c) with an insecticidal activity. Chemically synthesized U10-MYRTX-Mri1a, -Mri1b, -Mri1c, and U20-MYRTX-Mri1a irreversibly paralyzed blowflies at the highest doses tested (30-125 nmol·g-1). U13-MYRTX-Mri1a, the most potent neurotoxic peptide at 1 h, had reversible effects after 24 h (150 nmol·g-1). Finally, U3-MYRTX-Mri1a has no insecticidal activity, even at up to 55 nmol·g-1. Thus, M. rubida employs a paralytic venom rich in linear insecticidal peptides, which likely act by disrupting cell membranes.
Please use this identifier to cite or link to this item: