Diversity profiling of xenic cultures of Dientamoeba fragilis following systematic antibiotic treatment and prospects for genome sequencing.

Publisher:
Cambridge University Press (CUP)
Publication Type:
Journal Article
Citation:
Parasitology (Cambridge), 2020, 147, (1), pp. 29-38
Issue Date:
2020-01
Filename Description Size
Diversity_profiling_of_xenic_c.pdfPublished version509.16 kB
Adobe PDF
Full metadata record
The presence of bacterial DNA in Dientamoeba fragilis DNA extracts from culture poses a substantial challenge to sequencing the D. fragilis genome. However, elimination of bacteria from D. fragilis cultures has proven difficult in the past, presumably due to its dependence on some unknown prokaryote/s. This study explored options for removal of bacteria from D. fragilis cultures and for the generation of genome sequence data from D. fragilis. DNA was extracted from human faecal samples and xenic D. fragilis cultures. Extracts were subjected to 16S ribosomal DNA bacterial diversity profiling. Xenic D. fragilis cultures were then subject to antibiotic treatment regimens that systematically removed bacterial species depending on their membrane structure (Gram-positive or Gram-negative) and aerobic requirements. The impact of these treatments on cultures was assessed by 16S amplicon sequencing. Prior to antibiotic treatment, the cultures were dominated by Gram-negative bacteria. Addition of meropenem to cultures eliminated anaerobic Gram-negative bacteria, but it also led to protozoan death after 5 days incubation. The seeding of meropenem resistant Klebsiella pneumoniae strain KPC-2 into cultures before treatment by meropenem prevented death of D. fragilis cells beyond this 5 day period, suggesting that one or more species of Gram-negative bacteria may be an essential nutritional requirement for D. fragilis. Gram-positive cells were completely eliminated using vancomycin without affecting trophozoite growth. Finally, this study shows that genome sequencing of D. fragilis is feasible following bacterial elimination from cultures as the result of the major advances occurring in bioinformatics. We provide evidence on this fact by successfully sequencing the D. fragilis 28S large ribosomal DNA subunit gene using culture-derived DNA.
Please use this identifier to cite or link to this item: