Extreme rainfall, rainfall erosivity, and hillslope erosion in Australian Alpine region and their future changes

Publisher:
Wiley
Publication Type:
Journal Article
Citation:
International Journal of Climatology, 2020, 40, (2), pp. 1213-1227
Issue Date:
2020-02-01
Filename Description Size
joc.6266.pdfAccepted version13.29 MB
Adobe PDF
Full metadata record
© 2019 Royal Meteorological Society The Australian Alpine region is highly vulnerable to extreme climate events such as heavy rainfall and snow falls, these events subsequently impact rainfall erosivity and hillslope erosion in the region. In this study, the relationship between extreme rainfall indices (ERIs) and rainfall erosivity was examined across the Alpine region in New South Wales (NSW) and Australian Capital Territory (ACT) and the surrounding areas including Murray and Murrumbidgee and South East and Tablelands (SET). Rainfall erosivity, hillslope erosion, and their changes were estimated in the future periods using the revised universal soil loss equation and the NSW/ACT Regional Climate Modeling (NARCliM) projections. Results from the study demonstrate a good relationship between ERIs (especially Rx5Day) and rainfall erosivity. The rainfall erosivity and hillslope erosion are projected to increase about 2 and 8% for the near future (2020–2039), further increase to 8 and 18% for the far future (2060–2079) in the Alpine region assuming the groundcover is maintained at the current condition. The change in rainfall erosivity and erosion risk is highly uneven in space and in season with the highest erosion risk in summer with an increase about 33% in the next 50 years. The highest erosion risk area is predicted within SET (maximum rate 19.95 Mg ha−1 year−1), but on average, the ACT has the highest erosion rate, which is above 1.36 Mg ha−1 year−1 in all periods. The snowmelt in spring in the Alpine region is estimated to increase the rainfall erosivity by 13% in the baseline period, up to 24% in the near future, but far less (about 1%) in the far future due to predicted temperature rise and less snow available in the Alpine region in the next 50 years.
Please use this identifier to cite or link to this item: