Ultrasound volume projection image quality selection by ranking from convolutional RankNet.

Publisher:
Elsevier BV
Publication Type:
Journal Article
Citation:
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, 2021, 89, pp. 101847
Issue Date:
2021-01-11
Full metadata record
Periodic inspection and assessment are important for scoliosis patients. 3D ultrasound imaging has become an important means of scoliosis assessment as it is a real-time, cost-effective and radiation-free imaging technique. With the generation of a 3D ultrasound volume projection spine image using our Scolioscan system, a series of 2D coronal ultrasound images are produced at different depths with different qualities. Selecting a high quality image from these 2D images is the crucial task for further scoliosis measurement. However, adjacent images are similar and difficult to distinguish. To learn the nuances between these images, we propose selecting the best image automatically, based on their quality rankings. Here, the ranking algorithm we use is a pairwise learning-to-ranking network, RankNet. Then, to extract more efficient features of input images and to improve the discriminative ability of the model, we adopt the convolutional neural network as the backbone due to its high power of image exploration. Finally, by inputting the images in pairs into the proposed convolutional RankNet, we can select the best images from each case based on the output ranking orders. The experimental result shows that convolutional RankNet achieves better than 95.5% top-3 accuracy, and we prove that this performance is beyond the experience of a human expert.
Please use this identifier to cite or link to this item: