Nutrient availability constrains the hydraulic architecture and water relations of savannah trees

Publisher:
Blackwell Publishing
Publication Type:
Journal Article
Citation:
Plant Cell and Environment, 2006, 29 (12), pp. 2153 - 2167
Issue Date:
2006-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010001816OK.pdf354.2 kB
Adobe PDF
Leaf and whole plant-level functional traits were studied in five dominant woody savannah species from Central Brazil (Cerrado) to determine whether reduction of nutrient limitations in oligotrophic Cerrado soils affects carbon allocation, water relations and hydraulic architecture. Four treatments were used: control, N additions, P additions and N plus P additions. Fertilizers were applied twice yearly, from October 1998 to March 2004. Sixty-three months after the first nutrient addition, the total leaf area increment was significantly greater across all species in the N- and the N + P-fertilized plots than in the control and in the P-fertilized plots. Nitrogen fertilization significantly altered several components of hydraulic architecture: specific conductivity of terminal stems increased with N additions, whereas leaf-specific conductivity and wood density decreased in most cases. Average daily sap flow per individual was consistently higher with N and N + P additions compared to the control, but its relative increase was not as great as that of leaf area. Long-term additions of N and N + P caused midday ?L to decline significantly by a mean of 0.6 MPa across all species because N-induced relative reductions in soil-to-leaf hydraulic conductance were greater than those of stomatal conductance and transpiration on a leaf area basis
Please use this identifier to cite or link to this item: