Evaluation of an ensemble-based distance statistic for clustering MLST datasets using epidemiologically defined clusters of cyclosporiasis.
Nascimento, FS
Barratt, J
Houghton, K
Plucinski, M
Kelley, J
Casillas, S
Bennett, CC
Snider, C
Tuladhar, R
Zhang, J
Clemons, B
Madison-Antenucci, S
Russell, A
Cebelinski, E
Haan, J
Robinson, T
Arrowood, MJ
Talundzic, E
Bradbury, RS
Qvarnstrom, Y
- Publisher:
- Cambridge University Press (CUP)
- Publication Type:
- Journal Article
- Citation:
- Epidemiology and infection, 2020, 148, pp. 1-10
- Issue Date:
- 2020-08-03
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Full metadata record
Field | Value | Language |
---|---|---|
dc.contributor.author | Nascimento, FS | |
dc.contributor.author |
Barratt, J |
|
dc.contributor.author | Houghton, K | |
dc.contributor.author | Plucinski, M | |
dc.contributor.author | Kelley, J | |
dc.contributor.author | Casillas, S | |
dc.contributor.author | Bennett, CC | |
dc.contributor.author | Snider, C | |
dc.contributor.author | Tuladhar, R | |
dc.contributor.author | Zhang, J | |
dc.contributor.author | Clemons, B | |
dc.contributor.author | Madison-Antenucci, S | |
dc.contributor.author | Russell, A | |
dc.contributor.author | Cebelinski, E | |
dc.contributor.author | Haan, J | |
dc.contributor.author | Robinson, T | |
dc.contributor.author | Arrowood, MJ | |
dc.contributor.author | Talundzic, E | |
dc.contributor.author | Bradbury, RS | |
dc.contributor.author | Qvarnstrom, Y | |
dc.date.accessioned | 2021-04-23T05:10:10Z | |
dc.date.available | 2021-04-23T05:10:10Z | |
dc.date.issued | 2020-08-03 | |
dc.identifier.citation | Epidemiology and infection, 2020, 148, pp. 1-10 | |
dc.identifier.issn | 0950-2688 | |
dc.identifier.issn | 1469-4409 | |
dc.identifier.uri | http://hdl.handle.net/10453/148312 | |
dc.description.abstract | Outbreaks of cyclosporiasis, a food-borne illness caused by the coccidian parasite Cyclospora cayetanensis have increased in the USA in recent years, with approximately 2300 laboratory-confirmed cases reported in 2018. Genotyping tools are needed to inform epidemiological investigations, yet genotyping Cyclospora has proven challenging due to its sexual reproductive cycle which produces complex infections characterized by high genetic heterogeneity. We used targeted amplicon deep sequencing and a recently described ensemble-based distance statistic that accommodates heterogeneous (mixed) genotypes and specimens with partial genotyping data, to genotype and cluster 648 C. cayetanensis samples submitted to CDC in 2018. The performance of the ensemble was assessed by comparing ensemble-identified genetic clusters to analogous clusters identified independently based on common food exposures. Using these epidemiologic clusters as a gold standard, the ensemble facilitated genetic clustering with 93.8% sensitivity and 99.7% specificity. Hence, we anticipate that this procedure will greatly complement epidemiologic investigations of cyclosporiasis. | |
dc.format | Electronic | |
dc.language | eng | |
dc.publisher | Cambridge University Press (CUP) | |
dc.relation.ispartof | Epidemiology and infection | |
dc.relation.isbasedon | 10.1017/s0950268820001697 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | 1117 Public Health and Health Services | |
dc.subject.classification | Epidemiology | |
dc.subject.mesh | Cluster Analysis | |
dc.subject.mesh | Cyclospora | |
dc.subject.mesh | Cyclosporiasis | |
dc.subject.mesh | Data Interpretation, Statistical | |
dc.subject.mesh | Databases, Factual | |
dc.subject.mesh | Feces | |
dc.subject.mesh | Genetic Markers | |
dc.subject.mesh | Haplotypes | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Multilocus Sequence Typing | |
dc.subject.mesh | Feces | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Cyclospora | |
dc.subject.mesh | Cyclosporiasis | |
dc.subject.mesh | Genetic Markers | |
dc.subject.mesh | Cluster Analysis | |
dc.subject.mesh | Data Interpretation, Statistical | |
dc.subject.mesh | Haplotypes | |
dc.subject.mesh | Databases, Factual | |
dc.subject.mesh | Multilocus Sequence Typing | |
dc.subject.mesh | Cluster Analysis | |
dc.subject.mesh | Cyclospora | |
dc.subject.mesh | Cyclosporiasis | |
dc.subject.mesh | Data Interpretation, Statistical | |
dc.subject.mesh | Databases, Factual | |
dc.subject.mesh | Feces | |
dc.subject.mesh | Genetic Markers | |
dc.subject.mesh | Haplotypes | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Multilocus Sequence Typing | |
dc.title | Evaluation of an ensemble-based distance statistic for clustering MLST datasets using epidemiologically defined clusters of cyclosporiasis. | |
dc.type | Journal Article | |
utslib.citation.volume | 148 | |
utslib.location.activity | England | |
utslib.for | 1117 Public Health and Health Services | |
pubs.organisational-group | /University of Technology Sydney | |
pubs.organisational-group | /University of Technology Sydney/Faculty of Science | |
pubs.organisational-group | /University of Technology Sydney/Faculty of Science/School of Life Sciences | |
utslib.copyright.status | open_access | * |
pubs.consider-herdc | false | |
dc.date.updated | 2021-04-23T05:10:07Z | |
pubs.publication-status | Published | |
pubs.volume | 148 |
Abstract:
Outbreaks of cyclosporiasis, a food-borne illness caused by the coccidian parasite Cyclospora cayetanensis have increased in the USA in recent years, with approximately 2300 laboratory-confirmed cases reported in 2018. Genotyping tools are needed to inform epidemiological investigations, yet genotyping Cyclospora has proven challenging due to its sexual reproductive cycle which produces complex infections characterized by high genetic heterogeneity. We used targeted amplicon deep sequencing and a recently described ensemble-based distance statistic that accommodates heterogeneous (mixed) genotypes and specimens with partial genotyping data, to genotype and cluster 648 C. cayetanensis samples submitted to CDC in 2018. The performance of the ensemble was assessed by comparing ensemble-identified genetic clusters to analogous clusters identified independently based on common food exposures. Using these epidemiologic clusters as a gold standard, the ensemble facilitated genetic clustering with 93.8% sensitivity and 99.7% specificity. Hence, we anticipate that this procedure will greatly complement epidemiologic investigations of cyclosporiasis.
Please use this identifier to cite or link to this item:
Download statistics for the last 12 months
Not enough data to produce graph