N-Glycosylation regulates endothelial lipase-mediated phospholipid hydrolysis in apoE- and apoA-I-containing high density lipoproteins

American Society for Biochemistry and Molecular Biology, Inc.
Publication Type:
Journal Article
Journal of Lipid Research, 2007, 48 (9), pp. 2047 - 2057
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010001819OK.pdf269.03 kB
Adobe PDF
Endothelial lipase (EL) is a member of the triglyceride lipase gene family with high phospholipase and low triacylglycerol lipase activities and a distinct preference for hydrolyzing phospholipids in HDL. EL has five potential N-glycosylation sites, four of which are glycosylated. The aim of this study was to determine how glycosylation affects the phospholipase activity of EL in physiologically relevant substrates. Site-directed mutants of EL were generated by replacing asparagine (N) 62, 118, 375, and 473 with alanine (A). These glycan-deficient mutants were used to investigate the kinetics of phospholipid hydrolysis in fully characterized preparations of spherical reconstituted high density lipoprotein (rHDL) containing apolipoprotein E2 (apoE2) [(E2)rHDL], apoE3 [(E3)rHDL], apoE4 [(E4)rHDL], or apoA-I [(A-I)rHDL] as the sole apolipoprotein. Wild-type EL hydrolyzed the phospholipids in (A-I)rHDL, (E2)rHDL, (E3)rHDL, and (E4)rHDL to similar extents. The phospholipase activities of EL N118A, EL N375A, and EL N473A were significantly diminished relative to that of wild-type EL, with the greatest reduction being apparent for (E3)rHDL.
Please use this identifier to cite or link to this item: