Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain

Elsevier BV
Publication Type:
Journal Article
Agricultural Water Management, 2010, 97 (8), pp. 1165 - 1174
Issue Date:
Full metadata record
Files in This Item:
Filename Description SizeFormat
2010003652OK.pdf946.46 kBAdobe PDF
Water is the most important limiting factor of wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping systems in the North China Plain (NCP). A two-year experiment with four irrigation levels based on crop growth stages was used to calibrate and validate RZWQM2, a hybrid model that combines the Root Zone Water Quality Model (RZWQM) and DSSAT4.0. The calibrated model was then used to investigate various irrigation strategies for high yield and water use efficiency (WUE) using weather data from 1961 to 1999. The model simulated soil moisture, crop yield, above-ground biomass and WUE in responses to irrigation schedules well, with root mean square errors (RMSEs) of 0.029 cm3 cm-3, 0.59 Mg ha-1, 2.05 Mg ha-1, and 0.19 kg m-3, respectively, for wheat; and 0.027 cm3 cm-3, 0.71 Mg ha-1, 1.51 Mg ha-1 and 0.35 kg m-3, respectively, for maize. WUE increased with the amount of irrigation applied during the dry growing season of 20012002, but was less sensitive to irrigation during the wet season of 20022003. Long-term simulation using weather data from 1961 to 1999 showed that initial soil water at planting was adequate (at 82% of crop available water) for wheat establishment due to the high rainfall during the previous maize season. Preseason irrigation for wheat commonly practiced by local farmers should be postponed to the most sensitive growth stage (stem extension) for higher yield and WUE in the area. Preseason irrigation for maize is needed in 40% of the years. With limited irrigation available (100, 150, 200, or 250 mm per year), 80% of the water allocated to the critical wheat growth stages and 20% applied at maize planting achieved the highest WUE and the least water drainage overall for the two crops.
Please use this identifier to cite or link to this item: