The carbon balance of European croplands: a cross-site comparison of simulation models

Elsevier BV
Publication Type:
Journal Article
Agricultural, Ecosystem and Environment, 2010, 139 (3), pp. 419 - 453
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010004016OK.pdf1.47 MB
Adobe PDF
Croplands cover approximately 45% of Europe and play an important role in the overall carbon budget of the continent. However, the estimation of their carbon balance remains uncertain due to the diversity of crops and cropping systems together with the strong influence of human management. Here, we present a multi-site model comparison for four cropland ecosystem models namely theDNDC,ORCHIDEESTICS, CERES-EGC and SPA models. We compare the accuracy of the models in predicting net ecosystem exchange (NEE), gross primary production (GPP), ecosystem respiration (Reco) as well as actual evapotranspiration (ETa) for winter wheat (Triticum aestivum L.) and maize (Zea mays L.) derived from eddy covariance measurements on five sites along a gradient of climatic conditions from eastern to southwesterly Europe. The models are all able to simulate daily GPP. The simulation results for daily ETa and Reco are, however, less accurate. The resulting simulation of daily NEE is adequate except in some cases where models fail due to a lack in phase and amplitude alignment. ORCHIDEE-STICS and SPAshowthe best performance. Nevertheless, they are not able to simulate full crop rotations or the multiple management practices used. CERES-EGC, and especially DNDC, although exhibiting a lower level of model accuracy, are able to simulate such conditions, resulting in more accurate simulation of annual cumulative NEE.
Please use this identifier to cite or link to this item: