Oxygen Distribution and Potential Ammonia Oxidation in Floating, Liquid Manure Crusts

Amer Soc Agronomy
Publication Type:
Journal Article
Journal of Environmental Quality, 2010, 39 (5), pp. 1813 - 1820
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010004239OK.pdf1.57 MB
Adobe PDF
Floating, organic crusts on liquid manure, stored as a result of animal production, reduce emission of ammonia (NH(3)) and other volatile compounds during storage. The occurrence of NO(2)(-) and NO(3)(-) in the crusts indicate the presence of actively metabolizing NH(3)-oxidizing bacteria (AOB) which may be partly responsible for this mitigation effect. Six manure tanks with organic covers (straw and natural) were surveyed to investigate the prevalence and potential activity of AOB and its dependence on the O(2) availability in the crust matrix as studied by electrochemical profiling. Oxygen penetration varied from <1 mm in young, poorly developed natural crusts and old straw crusts, to several centimeters in the old natural crusts. The AOB were ubiquitously present in all crusts investigated, but nitrifying activity could only be detected in old natural crusts and young straw crust with high O(2) availability. In old natural crusts, total potential NH(3) oxidation rates were similar to reported fluxes of NH(3) from slurry without surface crust. These results indicate that old, natural surface crusts may develop into a porous matrix with high O(2) availability that harbors an active population of aerobic microorganisms, including AOB. The microbial activity may thus contribute to a considerable reduction of ammonia emissions from slurry tanks with well-developed crusts.
Please use this identifier to cite or link to this item: