Broad scale proteomic analysis of heat-destabilised symbiosis in the hard coral Acropora millepora.
- Publisher:
- Springer Science and Business Media LLC
- Publication Type:
- Journal Article
- Citation:
- Scientific reports, 2021, 11, (1), pp. 19061
- Issue Date:
- 2021-09-24
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
Coral reefs across the globe are threatened by warming oceans. The last few years have seen the worst mass coral bleaching events recorded, with more than one quarter of all reefs irreversibly impacted. Considering the widespread devastation, we need to increase our efforts to understanding the physiological and metabolic shifts underlying the breakdown of this important symbiotic ecosystem. Here, we investigated the proteome (PRIDE accession # PXD011668) of both host and symbionts of the reef-building coral Acropora millepora exposed to ambient (~ 28 °C) and elevated temperature (~ 32 °C for 2 days, following a five-day incremental increase) and explored associated biomolecular changes in the symbiont, with the aim of gaining new insights into the mechanisms underpinning the collapse of the coral symbiosis. We identified 1,230 unique proteins (774 host and 456 symbiont) in the control and thermally stressed corals, of which 107 significantly increased and 125 decreased in abundance under elevated temperature relative to the control. Proteins involved in oxidative stress and proteolysis constituted 29% of the host proteins that increased in abundance, with evidence of impairment to endoplasmic reticulum and cytoskeletal regulation proteins. In the symbiont, we detected a decrease in proteins responsible for photosynthesis and energy production (33% of proteins decreased in abundance), yet minimal signs of oxidative stress or proteolysis. Lipid stores increased > twofold despite reduction in photosynthesis, suggesting reduced translocation of carbon to the host. There were significant changes in proteins related to symbiotic state, including proteins linked to nitrogen metabolism in the host and the V-ATPase (-0.6 fold change) known to control symbiosome acidity. These results highlight key differences in host and symbiont proteomic adjustments under elevated temperature and identify two key proteins directly involved in bilateral nutrient exchange as potential indicators of symbiosis breakdown.
Please use this identifier to cite or link to this item: