A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries.
- Publisher:
- Springer Science and Business Media LLC
- Publication Type:
- Journal Article
- Citation:
- Nat Commun, 2021, 12, (1), pp. 5746
- Issue Date:
- 2021-09-30
Recently Added
Filename | Description | Size | |||
---|---|---|---|---|---|
A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries.pdf | Published version | 4.86 MB |
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is new to OPUS and is not currently available.
The current Li-based battery technology is limited in terms of energy contents. Therefore, several approaches are considered to improve the energy density of these energy storage devices. Here, we report the combination of a heteroatom-based gel polymer electrolyte with a hybrid cathode comprising of a Li-rich oxide active material and graphite conductive agent to produce a high-energy "shuttle-relay" Li metal battery, where additional capacity is generated from the electrolyte's anion shuttling at high voltages. The gel polymer electrolyte, prepared via in situ polymerization in an all-fluorinated electrolyte, shows adequate ionic conductivity (around 2 mS cm-1 at 25 °C), oxidation stability (up to 5.5 V vs Li/Li+), compatibility with Li metal and safety aspects (i.e., non-flammability). The polymeric electrolyte allows for a reversible insertion of hexafluorophosphate anions into the conductive graphite (i.e., dual-ion mechanism) after the removal of Li ions from Li-rich oxide (i.e., rocking-chair mechanism).
Please use this identifier to cite or link to this item: