Macrophages of different tissue origin exhibit distinct inflammatory responses to mycobacterial infection.

Publisher:
Wiley
Publication Type:
Journal Article
Citation:
Immunol Cell Biol, 2021, 99, (10), pp. 1085-1092
Issue Date:
2021-11
Full metadata record
Macrophages display marked plasticity with functions in both inflammation and tissue repair. Evidence demonstrates that this spectrum of macrophage phenotypes is influenced by their local microenvironment and tissue origin. However, in vitro macrophage experiments often do not or cannot readily use macrophages from the most relevant tissue of origin. This study investigated if the origin of two C57BL/6 mouse macrophage cell lines of alveolar (AMJ2-C11) and peritoneal (IC-21) origin may influence their response to mycobacterial infection. Both cell lines equally controlled the growth of Mycobacterium bovis BCG and Mycobacterium tuberculosis, although the expression of all proinflammatory cytokines and chemokines measured (TNF, IL-6, MCP-1, MIP-1α, MIP-1β, and RANTES) was significantly higher in AMJ2-C11 cells than in IC-21 cells. During M. tuberculosis infection, IL-6, MCP-1, and RANTES expression increased 5-fold, and MIP-1β expression increased 30-fold. Additionally, AMJ2-C11 cells exhibited significantly higher inducible nitric oxide synthase activity than IC-21 cells, indicative of a more polarized M1 response. The expression of multiple surface markers was also assessed by flow cytometry. CD80 and CD86 were significantly upregulated in AMJ2-C11 cells and downregulated in IC-21 cells during M. tuberculosis infection. The results support the notion that the origin of tissue-resident macrophages influences their phenotype and antimicrobial response and demonstrate hereto unrecognized potential for these cell lines in in vitro studies.
Please use this identifier to cite or link to this item: