User intent estimation during robot learning using physical human robot interaction primitives

Springer Science and Business Media LLC
Publication Type:
Journal Article
Autonomous Robots
Full metadata record
AbstractAs robotic systems transition from traditional setups to collaborative work spaces, the prevalence of physical Human Robot Interaction has risen in both industrial and domestic environments. A popular representation for robot behavior is movement primitives which learn, imitate, and generalize from expert demonstrations. While there are existing works in context-aware movement primitives, they are usually limited to contact-free human robot interactions. This paper presents physical Human Robot Interaction Primitives (pHRIP), which utilize only the interaction forces between the human user and robot to estimate user intent and generate the appropriate robot response during physical human robot interactions. The efficacy of pHRIP is evaluated through multiple experiments based on target-directed reaching and obstacle avoidance tasks using a real seven degree of freedom robot arm. The results are validated against Interaction Primitives which use observations of robotic trajectories, with discussions of future pHRI applications utilizing pHRIP.
Please use this identifier to cite or link to this item: